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Abstract

The graphon function is fundamental to modeling exchangeable graphs, which

form the basis for a wide variety of networks. In this paper, we use the additive sep-

arable model as a parsimonious representation of the graphon, capable of generating

a low-rank connection probability matrix for network data. This model effectively

addresses the well-known identification challenges associated with graphon functions.

We develop an efficient estimation approach that leverages subgraph counts to esti-

mate the low-rank connection matrix and uses interpolation to recover the graphon

functions, achieving the minimax optimal estimation rate. We provide the conver-

gence rate of our method, and validate its computational efficiency and estimation

accuracy through comprehensive simulation studies.

1 Introduction

With advancements in data collection and analysis techniques, the modeling of network

data has become increasingly prevalent. Examples of network data include brain networks

[Maugis et al., 2020], co-authorship networks [Isfandyari-Moghaddam et al., 2023], and

biological networks [Kamimoto et al., 2023], among others. A critical challenge in analyzing

such data is understanding the underlying generative mechanisms, which are essential for

tasks like studying dynamic evolution [Pensky, 2019], predicting links [Gao et al., 2016],

and detecting communities [Jin et al., 2021]. One effective modeling framework is that

of exchangeable graphs, which represent networks as graphs where nodes correspond to

objects and edges represent connections between them. The concept of exchangeability

implies that the joint distribution of edges remains invariant under any permutation of

the nodes. According to the Aldous-Hoover theorem, any exchangeable graph can be

characterized by a graph function, commonly known as a graphon. The study of graphons
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has gained substantial attention in the literature due to their ability to tackle a wide array

of challenges, including explaining the asymptotic normality of subgraphs [Bickel et al.,

2011] and conducting hypothesis testing for the equivalence of two graphs [Maugis et al.,

2020]. Furthermore, the graphon model encompasses several widely used models as special

cases, such as the stochastic block model (SBM) [Holland et al., 1983], the random dot

product graph (RDPG) model [Young and Scheinerman, 2007], and the latent space model

[Hoff et al., 2002].

The graphon is a symmetric, measurable bivariate function, which, without additional

assumptions, is not directly estimable from a single observed network. However, by lever-

aging its eigenvalue-eigenfunction decomposition, we can impose a highly effective assump-

tion: truncating the decomposition to retain terms with leading eigenvalues, similar to

principal component analysis. A key benefit of this approach is that the resulting connec-

tion probability matrix P–the matrix formed when the graphon function is evaluated at

the nodes–naturally inherits the same low rank as the truncated graphon.

Building on this insight, we propose the Additive Separable Graphon (ASG) models,

which elegantly align the low-rank properties of both the graphon and the connection prob-

ability matrix. To estimate this new low-rank network model, we have developed a highly

efficient method that harnesses well-established, scalable techniques for subgraph counting,

enabling rapid and practical implementation. The core idea is intuitive: a matrix of rank r

can be decomposed into a sum of r rank-1 matrices. By counting the number of O(r) sub-

graphs, we extract the information corresponding to these r rank-1 matrices. Solving the

associated system of equations allows us to estimate each matrix individually. By combin-

ing these estimates, we reconstruct the final rank-r matrix, which serves as our estimator

for P . The graphon function f is then estimated by utilizing sorting and interpolation

techniques based on these rank-1 matrix estimates. The graphon captures the limiting be-

havior of a graphon model, and our method leverages the low-rank structure of the graphon

for estimation. Notably, our method is tuning parameter-free, as it does not require band-

width or other adjustments, and it performs consistently well across various settings. On

the other hand, estimating the connection probability matrix is important in practice and

has attracted increasing attention, see for example, all of which focus on estimating the

connection probability matrix rather than the graphon itself. In contrast, our method can

estimate the graphon function and connection probability matrix simultaneously.

In the existing literature, graphon estimation methods can be broadly categorized into

two groups: those focused on estimating the graphon itself, and those targeting the connec-

tion probability matrix P . For graphon estimation, Olhede and Wolfe [2014] approximate

the graphon using blocks, treating it as a two-dimensional step function. Their method,

however, requires finding the argmax of a permutation, and their implementation relies on
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a greedy search algorithm that can be computationally slow (see Section 4 for more details).

Chan and Airoldi [2014] refine this by reordering nodes based on degree and applying total

variation minimization, assuming the one-dimensional marginals of the graphon are strictly

monotone. However, this assumption is restrictive, as it excludes SBM. The resulting P

from either of these approaches is generally not low-rank.

On the other hand, methods focused on estimating P include Chatterjee [2015], who

impose a low-rank assumption on P and propose using Universal Singular-Value Thresh-

olding (USVT), treating the adjacency matrix as a perturbed version of P . Zhang et al.

[2017] apply neighborhood smoothing to estimate P , achieving near-minimax optimality.

Gao et al. [2016] propose a minimax optimal combinatorial least-squares estimator, which

is also adopted by Wu et al. [2024+] for non-exchangeable network. Despite these ad-

vances, due to identification issues, graphon functions cannot be directly recovered from

the connecting probability matrix produced by these methods.

The structure of this paper is organized as follows: Section 2 introduces our parsi-

monious low-rank graphon model, termed the Additive Separable Graphon Model (ASG).

Section 3 provides a comprehensive description of the estimation procedures and algorithms

for both r = 1 and r ≥ 2. In Section 4, we present simulation studies that demonstrate

the advantages of the proposed method in terms of implementation speed and estimation

accuracy. Section 5 offers a discussion and outlines potential directions for future research.

Finally, an analysis of time complexity, a real data example, additional simulation results,

an approach for selecting the rank r when it is unknown, the proofs of the theoretical

results, and the corresponding technical lemmas are provided in the appendix.

1.1 Notations

For a real number x, ⌊x⌋ denotes the greatest integer less than or equal to x. For two

positive real numbers a and b, we define a ∨ b = max(a, b) and a ∧ b = min(a, b). Let

∥A∥F represent the Frobenius norm of a matrix A, and let Aij denote the element in the

i-th row and j-th column. For two sequences of positive real numbers an and bn, we write

an = O(bn) or an ≲ bn if there exist positive constants N and C such that an
bn
≤ C for all

n > N . For two sequences of random variables Xn and Yn, we write Xn = Op(Yn) if for

any ε > 0, there is a constant Cε > 0 such that supn P(|Xn| ≥ Cε|Yn|) < ε.

2 Additive separable graphon model

We consider a random graph G = (V,E) using the graphon formulation. Specifically, for

i = 1, . . . , n, where n represents the size of the network, each node i is associated with
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an independent and identically distributed (i.i.d.) random variable Ui ∼ Uniform(0, 1).

The edges Eij are then independently drawn as Eij ∼ Bernoulli(f(Ui, Uj)) for i < j,

where f(·, ·) is a symmetric, measurable function f : [0, 1]2 → [0, 1] named the graphon.

Additionally, we have Eii = 0 and Eij = Eji for i > j. Although we focus on undirected

graphs without self-loops, our methods and theory can be readily extended to graphs

with self-loops or directed graphs. Notably, many large-scale real-world networks exhibit

low-rank characteristics, such as memberships or communities. The SBM [Holland et al.,

1983] and the RDPG [Young and Scheinerman, 2007] are popular approaches for capturing

unobserved heterogeneity in networks. For further discussion and real data examples, we

refer to Athreya et al. [2018], Thibeault et al. [2024], Fortunato [2010].

To incorporate low-rank structure into graphon models, we propose a parsimonious

model called the additive separable graphon model with rank r (ASG(r)), defined as follows:

f(Ui, Uj) =
r∑

k=1

λkGk(Ui)Gk(Uj), (1)

where |λ1| ≥ |λ2| ≥ · · · ≥ |λr| > 0, Gk is a measurable function,
∫ 1

0
G2

k(u) du = 1 for

k = 1, . . . , r, and
∫ 1

0
Gk(u)Gl(u) du = 0 for k ̸= l. This can be viewed as a truncated

eigen decomposition of the graphon, as suggested by the Hilbert-Schmidt theorem; see,

for example, Szegedy [2011]. Model (1) includes the aforementioned SBM and RDPG as

special cases. For example, if the Gk functions are step functions, model (1) reduces to

an SBM with r blocks. Moreover, if all λk values are positive, our model simplifies to a

rank r RDPG. The introduction of low-rank structures in graphons not only enhances the

ability of existing graphon models to capture real-world low-rank features of network data,

but also offers computational advantages due to the additive separable structure. In this

paper, we propose a novel, computationally efficient, and theoretically justified method to

estimate the connection probabilities {f(Ui, Uj)}ni,j=1 and the full graphon function f . It

is important to note that due to identification issues, effective approaches for estimating

general graphon functions in polynomial time are rare in practice [Gao and Ma, 2021].

3 Methodology and theory

Let pij = f(Ui, Uj) be the connection probability between the i-th and j-th nodes, with

P = (pij)i,j as the connection probability matrix. While we focus on estimating P and f

for r = 1 in Section 3.1, our method is readily extendable to cases where r ≥ 2, which we

provide in Section 3.2 for more detail.
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3.1 ASG(1): Additive Separable Graphon with Rank-1

To clarify the motivation, we first consider the case where r = 1, i.e., f(Ui, Uj) = λ1G1(Ui)G1(Uj).

Assume, without loss of generality, that infu∈[0,1]G1(u) ≥ 0; otherwise, we can replaceG1(u)

with |G1(u)|. Note that the degree of the i-th node, di =
∑

j Eij, satisfies

E(di | Ui)

n− 1
=

1

n− 1

∑
j ̸=i

∫ 1

0

f(Ui, Uj) dUj = λ1G1(Ui)

∫ 1

0

G1(u) du, (2)

which is proportional to G1(Ui). Moreover, by Lemma 2, we have

sup
i=1,...,n

|di − E(di | Ui)|
n− 1

= Op(
√

log(n)/n). (3)

Therefore, G1(Ui) can be estimated by di
n−1

, and consequently, pij can be estimated by
didj

(n−1)2
, both up to a multiplicative factor. Finally, we align with the sparsity of the graph G

to provide a moment estimation of the multiplicative factor. We summarize the estimation

procedure for pij in Algorithm 1.

Algorithm 1 Estimation procedure for {pij}ni,j=1 for ASG(1).

Require: The graph G = (V,E).
1: For i = 1, . . . , n, let di =

∑
j:j ̸=i Eij .

2: Let c1 =
∑

i,j:i ̸=j Eij

/∑
i,j:i ̸=j didj .

3: For any (i, j) pair, i ̸= j, let the estimator of pij be p̂ij = 1 ∧ (c1didj).
4: Let p̂ii = 0 for i = 1, . . . , n.
5: Output {p̂ij}ni,j=1.

Algorithm 1 is very simple, utilizing the low-rank setting r = 1. The time complexity

of Algorithm 1 is O(n2), which is efficient considering that there are O(n2) values of pij

to be estimated. By comparison, SVD-based methods (e.g., Xu [2018]) typically require a

time complexity of O(n3).

Remark 1 (Comparison with power iteration method for estimating the connection prob-

ability matrix). As an alternative method for computing the decomposition in our model,

the power iteration approach [Mises and Pollaczek-Geiringer, 1929, Stoer et al., 1980] can

be utilized. In our simulations, we compare it with our approach for estimating connec-

tion probability matrices. As shown in Tables 2 and 5, both methods perform comparably

in dense regimes. However, our method demonstrates superior performance in the sparse

regime, as evidenced in Table 3.

We now present the theoretical results for the estimates p̂ij.
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Theorem 1. For ASG(1), assume that
∫ 1

0
G1(u) du > 0. Applying Algorithm 1 to obtain

the estimates p̂ij, we have supi,j |p̂ij − pij| = Op(
√

log(n)/n).

The assumption in Theorem 1 is mild and does not require the continuity of the func-

tion G1. This flexibility allows our model to accommodate block structures, such as the

SBM with a rank-1 connection probability matrix. Furthermore, the estimated connec-

tion probability matrix P̂ = (p̂ij)i,j retains a rank of 1, consistent with the rank of

P . Additionally, the result supi,j |p̂ij − pij| = Op(
√
log(n)/n) implies the convergence

∥P̂ −P∥2F/n2 = Op(log(n)/n), a metric commonly used in the literature, such as by Zhang

et al. [2017] and Gao et al. [2015]. Estimating the graphon function f(u, v) is generally

challenging due to the identification issues caused by measure-preserving transformations

[Borgs et al., 2015, Diaconis and Janson, 2007, Olhede and Wolfe, 2014]. Consequently,

many popular methods, including those in Gao et al. [2016] and Zhang et al. [2017], focus

on estimating the connection probability matrix, as we present in Theorem 1.

In the low-rank case with r = 1, we can mitigate the non-identifiability issue by defining

a canonical, monotonically non-decreasing graphon through rearrangement. Specifically, let

G†
1(u) = inf {t : µ(G1 ≤ t) ≥ u} ,

where µ(·) denotes the Lebesgue measure. As shown in Barbarino et al. [2022], the function

G†
1(u) is the monotone rearrangement of G1(u), making it monotonically non-decreasing,

left-continuous, and measure-preserving. Moreover, G†
1(u) is continuous if G1(u) is contin-

uous. Consequently, we can focus on the canonical graphon f †(u, v) := λ1G
†
1(u)G

†
1(v).

To estimate f †(u, v), we propose a degree sorting and interpolation method. Let σ(k)

denote the index i corresponding to the k-th smallest value in the sequence {di}ni=1, i.e.,

dσ(1) ≤ dσ(2) ≤ · · · ≤ dσ(n). Then, for any (u, v) ∈ [0, 1]2, we define

f̂ †(u, v) := 1 ∧ (c1h(u)h(v)) ,

where

h(v) :=


dσ(1), if ⌊v(n+ 1)⌋ = 0,

dσ(⌊v(n+1)⌋) (⌊v(n+ 1)⌋+ 1− v(n+ 1))

+ dσ(⌊v(n+1)⌋+1) (v(n+ 1)− ⌊v(n+ 1)⌋) ,
if 1 ≤ ⌊v(n+ 1)⌋ < n,

dσ(n), if ⌊v(n+ 1)⌋ ≥ n.

serves as an estimator of the graphon f †(u, v). Intuitively, Uσ(i) is close to i/(n+1), allowing

us to approximate the entire function using a piecewise linear approach. We then have the

following result.
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Theorem 2. For ASG(1), assuming that G1(u) is Lipschitz continuous on the interval

[0, 1], i.e., there exists a constant M > 0 such that for any u1, u2 ∈ [0, 1], |G1(u1) −
G1(u2)| ≤M |u1 − u2|. Then,

sup
u,v∈[0,1]

|f̂ †(u, v)− f †(u, v)| a.s.,L2−→ 0, and = Op(
√

log(n)/n).

The estimation rate coincides with Chan and Airoldi [2014].

3.2 ASG(r): Additive Separable Graphon with Rank-r

For ASG(r), the connection probability pij = f(Ui, Uj) is given by

pij =
r∑

k=1

λkGk(Ui)Gk(Uj),

where |λ1| ≥ |λ2| ≥ · · · ≥ |λr| > 0,
∫ 1

0
G2

k(u) du = 1 for 1 ≤ k ≤ r, and
∫ 1

0
Gi(u)Gj(u) du =

0 for 1 ≤ i ̸= j ≤ r. To estimate pij, the key idea is to leverage additional subgraph

counts to distinguish between the information derived from Gk, 1 ≤ k ≤ r. Since subgraph

frequencies represent moments of the graphon, as suggested by Bickel et al. [2011], our

approach can be seen as a form of moment estimation.

The study of subgraphs, often referred to as “motifs” in complex systems science, is

not only theoretically significant (e.g., Maugis et al. [2020], Bravo-Hermsdorff et al. [2023],

Ribeiro et al. [2021]) but also practically important (e.g., Milo et al. [2002], Dey et al.

[2019], Yu et al. [2019]). For simplicity, in the case of ASG(r), we use subgraphs consisting

of lines and cycles, as their expectations can be conveniently expressed using the graphon

function. Moreover, selecting lines and cycles allows us to approximate them using paths

with repeated nodes, which leads to a variant algorithm (Algorithm 3) that has the same

time complexity as matrix multiplication (which is O(n2.373)).

Specifically, for i = 1, . . . , n, let

L
(1)
i =

∑
i1

Eii1 , L
(a)
i =

∑
i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

Eii1

a∏
j=2

Eij−1ij for a ≥ 2,

C
(a)
i =

∑
i1,··· ,ia−1 distinct ,ik ̸=i,1≤k≤a−1

Eii1Eia−1i

a−1∏
j=2

Eij−1ij for a ≥ 3. (4)

In other words, L
(a)
i represents the count of simple paths of length a that have node i

as an endpoint, while C
(a)
i represents the count of cycles of length a with node i as a

point. By evaluating the expected counts of these subgraphs, we estimate the parame-
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ters (λ1, · · · , λr,
∫ 1

0
G1(u) du, · · · ,

∫ 1

0
Gr(u) du) by solving for (λ̂1, · · · , λ̂r, y1, · · · , yr) in the

following system of equations:

yk ≥ 0, for 1 ≤ k ≤ r, |λ̂1| > · · · > |λ̂r|,
r∑

k=1

λ̂a
k =

1∏a−1
j=0(n− j)

n∑
i=1

C
(a)
i for 3 ≤ a ≤ r + 2, (5)

r∑
k=1

λ̂a
ky

2
k =

1∏a
j=0(n− j)

n∑
i=1

L
(a)
i for 1 ≤ a ≤ r. (6)

As in (2), we express the conditional expectations as follows:

1∏a
j=1(n− j)

E(L(a)
i | Ui) =

r∑
k=1

λa
kGk(Ui)

∫ 1

0

Gk(u) du for 1 ≤ a ≤ r.

Then for every 1 ≤ i ≤ n, we define the point-wise statistics Ĝk(Ui), 1 ≤ k ≤ r, as the

solution for Gk(Ui), 1 ≤ k ≤ r, in the following system of equations:

1∏a
j=1(n− j)

L
(a)
i =

r∑
k=1

λ̂a
kykGk(Ui) for 1 ≤ a ≤ r. (7)

Additionally, we standardize Ĝk(Ui) as

G̃k(Ui) =
Ĝk(Ui)√∑n
i=1 Ĝ

2
k(Ui)/n

. (8)

We remark that this standardization step typically enhances performance in finite sam-

ples, benefiting both dense and sparse graphon settings. Then the estimated connection

probabilities are then given by p̂ij =
[
1 ∧

(
0 ∨ (

∑r
k=1 λ̂kG̃k(Ui)G̃k(Uj))

)]
. The estimation

procedure is summarized in Algorithm 2.

Algorithm 2 Estimation procedure for {pij}ni,j=1 for ASG(r).

Require: The graph G = (V,E).

1: For i = 1, . . . , n, compute L
(a)
i , 1 ≤ a ≤ r and C

(a)
i , 3 ≤ a ≤ r + 2 defined in (4).

2: Solve the system of equations in (6) to obtain (λ̂1, · · · , λ̂r, y1, · · · , yr).
3: For i = 1, 2, . . . , n, compute the estimators Ĝ1(Ui), · · · , Ĝr(Ui) from (7). Compute the standardized

estimators G̃1(Ui), · · · , G̃r(Ui) from (8).

4: For each pair (i, j), where i ̸= j, estimate pij as p̂ij =
[
1 ∧

(
0 ∨ (

∑r
k=1 λ̂kG̃k(Ui)G̃k(Uj))

)]
. Set p̂ii = 0

for i = 1, . . . , n.
5: Output {p̂ij}ni,j=1.

Remark 2. In Section A.1, we introduce a modified version of Algorithm 2 that retains
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all theoretical guarantees from Theorems 3 and 4 while achieving the time complexity of

matrix multiplication, specifically O(n2.373).

Remark 3 (Comparison with the spectral method for estimating the connection probabil-

ity matrix). Spectral methods, such as USVT [Chatterjee, 2015], also estimate the connec-

tion probability matrix by computing eigenvalues and eigenvectors. However, our approach

differs in several important ways. First, our motivation is fundamentally different: our

primary goal is to estimate the graphon function itself, rather than simply the connection

probability matrix. This distinction leads to a different methodology. While spectral methods

rely on matrix spectral decomposition, our approach is based on subgraph counts, employing

a moment-based technique that is a traditional and still evolving tool in statistical network

analysis. Second, our method achieves the minimax rate for the mean squared error up to a

logarithmic factor, without imposing smoothness assumptions on the graphon. In contrast,

spectral methods typically require assumptions such as piecewise constant or Hölder-class

smoothness of the graphon to derive convergence rates, as shown in Xu [2018]. Lastly, for

sparse graphons, our method empirically outperforms USVT, as demonstrated in Table 3,

highlighting its advantage in handling networks with lower densities.

We impose the following mild conditions for the consistency of p̂ij.

Assumption 1. Assume that: (i) |λ1| > · · · > |λr| > 0,
∫ 1

0
G2

k(u)du = 1, for 1 ≤ k ≤ r,

and
∫ 1

0
Gi(u)Gj(u)du = 0 for 1 ≤ i ̸= j ≤ n, (ii)

∫ 1

0
Gk(u)du ̸= 0, for 1 ≤ k ≤ r, (iii) there

exists a constant K > 0 such that max1≤k≤r supu∈[0,1] |Gk(u)| ≤ K.

Assumption 1 (i) is a standard condition ensuring the identifiability of the functions

Gk. Intuitively, this condition is analogous to the restriction on eigengaps in the RDPG

model (see, for example, Lyzinski et al. [2014]). Condition (ii) guarantees that the system

of equations (7) has a unique solution, which is a similar requirement found in Bickel et al.

[2011]. Condition (iii) is mild and is typically satisfied by most graphon functions. It

is worth noting that we do not require Gk’s to be piecewise smooth, which enhances the

generality and applicability of our model in terms of estimating the connection probability

matrix. We present the theoretical result for p̂ij as follows.

Theorem 3. For ASG(r), under Assumption 1, when n is sufficiently large, there exists

an open set U ⊂ R2r containing the point (λ1, · · · , λr,
∫ 1

0
G1(u) du, · · · ,

∫ 1

0
Gr(u) du) such

that, with probability 1, the system of equations in (6) has a unique solution within this

region. Moreover, for λ̂k, 1 ≤ k ≤ r, p̂ij, we have max1≤k≤r |λ̂k − λk| = Op(n
−1/2), and

supi,j |p̂ij − pij| = Op(
√

log(n)/n).

Importantly, Theorem 3 implies that ∥P̂ −P∥2F/n2 = Op(log(n)/n), which matches the

minimax rate (up to a logarithmic factor) that can be derived by following the proof of
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Theorem 1.1 in Gao et al. [2015]. The estimation of graphon functions for ASG(r) presents

more challenges than for ASG(1) due to the additive structure. We consider the following

assumptions for estimating the graphon function of ASG(r):

Assumption 2. Assume that: (i) At least one of Gk, 1 ≤ k ≤ r, is strictly monotonically

increasing; and (ii) All Gk, 1 ≤ k ≤ r, are Lipschitz continuous with Lipschitz constant M .

Assumption 2 serves as a technical condition that establishes an analogy to the “canon-

ical form” for graphon functions of ASG(r). In this context, we refer to the monotone

graphon as the reference marginal graphon. Chan and Airoldi [2014] proposed an alterna-

tive identification condition for graphon estimation, requiring the existence of a canonical

form of the graphon that becomes strictly monotone after integrating out one of its argu-

ments. It is also important to note that Assumption 2 is not necessary if the objective is

to estimate the connection probability matrix rather than the entire graphon function.

Under Assumption 2, we proceed without loss of generality by assuming G1 is the

reference marginal graphon. We first sort the estimated pairs (Ĝ1(Ui), Ĝ2(Ui), · · · , Ĝr(Ui))

according to the first coordinate. Let γ be a one-to-one permutation such that

Ĝ1(Uγ(1)) ≤ Ĝ1(Uγ(2)) ≤ · · · ≤ Ĝ1(Uγ(n)).

After sorting, we denote the reordered pairs as (Ĝ1(Uγ(i)), Ĝ2(Uγ(i)), · · · , Ĝr(Uγ(i))). We

then define the function

h1(u) = Ĝ1(Uγ(1))I(u(n+ 1) < 1) + Ĝ1(Uγ(n))I(u(n+ 1) ≥ n)

+
n−1∑
k=1

(
(k + 1− u(n+ 1)) Ĝ1(Uγ(k)) + (u(n+ 1)− k) Ĝ1(Uγ(k+1))

)
I(⌊u(n+ 1)⌋ = k)

as an estimate of the function G1. For Gk, k ≥ 2,, recognizing that Gk is a function of G1,

we define:

hk(u) = Ĝk(Uγ(1))I(h1(u) < Ĝ1(Uγ(1))) + Ĝk(Uγ(n))I(h1(u) ≥ Ĝ1(Uγ(n)))

+
n−1∑
k=1

(
Ĝ1(Uγ(k+1))− h1(u)

Ĝ1(Uγ(k+1))− Ĝ1(Uγ(k))
Ĝk(Uγ(k)) +

h1(u)− Ĝ1(Uγ(k))

Ĝ1(Uγ(k+1))− Ĝ1(Uγ(k))
Ĝk(Uγ(k+1))

)
I(Ĝ1(Uγ(k)) ≤ h1(u) < Ĝ1(Uγ(k+1))).

Finally, we define

f̂(u, v) := 1 ∧ (0 ∨ (
r∑

k=1

λ̂khk(u)hk(v))) (9)
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as an estimate of the graphon f(u, v).

Theorem 4 presents the theoretical result for this estimation. Since its proof follows

directly from the proof of Theorem 2, we omit the details.

Theorem 4. For ASG(r), under Assumptions 1 and 2, the estimated graphon given by (9)

satisfies

sup
u,v∈[0,1]

|f̂(u, v)− f(u, v)| a.s.,L2−→ 0, and = Op(
√

log(n)/n).

The estimation rate coincides with Chan and Airoldi [2014].

Remark 4. When r is unknown, we can estimate it using a ratio-based method. Due to

space limitations, we provide the detailed description in Appendix A.4.

4 Simulations

In this section, we evaluate the effectiveness of our method through extensive simulation

studies. For estimating the connection probability matrix P , we employ three metrics for

assessment:

• Mean squared error (MSE) given by ∥P̂−P∥2F/n2 (averaged with standard deviation)

across 100 repetitions.

• Maximum error defined as maxi ̸=j |p̂ij−pij| (averaged with standard deviation) across

100 repetitions.

• Average time cost measured in seconds.

The mean squared error is a standard metric commonly utilized in the literature. Addi-

tionally, we incorporate a stricter measure, namely the maximum error, to provide fur-

ther insight into performance. To mitigate the impact of random fluctuations, we average

both the MSE and the maximum error over 100 independent trials. For the estimation of

the graphon function f(u, v), we present visual representations of our estimated functions

Gk, 1 ≤ k ≤ r in Figure 1 to illustrate their performance. We generate networks from the

seven graphons listed in Table 1, with the network size set to n = 2000.

For comparison, we include the universal singular value thresholding (USVT) method

[Chatterjee, 2015] and the sort-and-smooth (SAS) method [Chan and Airoldi, 2014]. Both

algorithms demonstrate consistency and computational efficiency. Additionally, we com-

pare our approach with the network histogram method [Olhede and Wolfe, 2014], and the

neighborhood smoothing method proposed by Zhang et al. [2017]. As discussed in Remark
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ID Graphon f(u, v) Rank of f(u, v)
1 0.15 1
2 1.5

(1+exp(−u2))(1+exp(−v2)) 1

3 1
5

(
tan

(
π
2u
)
+ 7

6

) (
tan

(
π
2 v
)
+ 7

6

)
1

4 0.95 exp(−3u) exp(−3v) + 0.04(3u2 − 5u+ 1)(3v2 − 5v + 1) 2
5 1

2 (sinu sin v + uv) 2
6 0.05 + 0.15I(u < 0.4, v < 0.4) + 0.25I(u > 0.4, v > 0.4) 2

7
0.1 + 0.75I(u, v < 1

3 ) + 0.15I( 13 < u, v ≤ 2
3 )

+0.5I(u, v > 2
3 )

3

Table 1: List of Graphons. We estimate three rank-1 graphons using Algorithm 1, and four
rank ≥ 2 graphons using Algorithm 2.

1, we also include the power iteration method [Stoer et al., 1980]. To streamline the discus-

sion, we denote the following acronyms for these methods: N.S. for the method of Zhang

et al. [2017], Nethist for Olhede and Wolfe [2014], USVT for Chatterjee [2015], SAS for

Chan and Airoldi [2014], and P.I. for power iteration method. For a fair comparison, we

additionally conducted simulations using the true r for USVT (i.e., retaining only the first

r eigenpairs) when r ≥ 2, which we denote as USVT(r). For the aforementioned methods,

we utilize the R functions provided by the respective authors with their default parameters.

All results presented in this section were generated on an Apple M1 machine equipped with

16GB of RAM, running macOS Sonoma with R version 4.2.1.

Remark 5. In Algorithm 3, we employ L̃
(a)
i and C̃

(a)
i as approximations for L

(a)
i and C

(a)
i ,

enabling efficient computation. Though their equivalence has been proven in Theorem 5,

applying certain corrections in practice can improve the finite-sample performance. Specif-

ically, we let

Ľ
(3)
i = L̃

(3)
i − L̃

(2)
i − (L̃

(1)
i )2, Č

(4)
i = C̃

(4)
i − L̃

(2)
i − (L̃

(1)
i )2,

Č
(5)
i = C̃

(5)
i − 2(L̃

(1)
i − 2)C̃

(3)
i −

1

n

(
n∑

k=1

L̃
(1)
k

)
C̃

(3)
i − 2

n∑
k=1

EikC̃
(3)
k

and use Ľ
(3)
i , Č

(4)
i , Č

(5)
i to replace L̃

(3)
i , C̃

(4)
i , C̃

(5)
i respectively in Algorithm 3. In fact, we

have Ľ
(3)
i = L

(3)
i , Č

(4)
i = C

(4)
i , and Č

(5)
i is closer to C

(5)
i compared to C̃

(5)
i .

We present a comprehensive summary of the results for rank ≥ 2 settings in Tables 2,

with additional results for the rank 1 settings presented in the appendix. Our method ex-

hibit good performance across various settings for both MSE and maximum error, achieving

the best performance in the first and fourth settings. Additionally, our method demon-

strates comparable speed to the SAS and P.I., while significantly outperforming all other

methods in terms of computational efficiency.

Moreover, the accuracy of our method is generally on par with that of the USVT

12



ID Method
MSE

(×10−4)
Std. dev of

MSE (×10−6)
Max. error
(×10−2)

Std dev.of
max. error (×10−3)

Run time
(seconds)

4

Ours 1.826 6.172 12.898 12.559 0.627
N.S. 4.388 8.413 17.902 11.686 108.569

Nethist 3.928 16.982 18.649 15.296 22.829
USVT 7.617 17.079 13.637 13.036 10.064
SAS 18.641 90.264 97.064 24.053 1.422
P.I. 1.890 6.420 13.400 13.927 0.654

USVT(2) 1.898 6.462 13.408 13.906 10.064

5

Ours 1.774 6.204 9.676 7.804 1.507
N.S. 7.101 14.996 17.473 9.156 122.995

Nethist 7.729 31.838 18.559 15.486 23.804
USVT 1.769 6.078 9.661 7.871 13.684
SAS 28.703 115.215 89.861 49.103 1.104
P.I. 4.680 7.730 29.196 56.981 0.736

USVT(2) 5.140 9.234 31.701 38.934 13.684

6

Ours 2.582 7.017 9.319 7.808 0.682
N.S. 7.527 6.960 18.312 11.119 115.813

Nethist 9.548 244.015 22.573 107.570 19.441
USVT 2.383 6.082 10.052 8.343 11.169
SAS 18.456 16.344 95.000 0.000 1.500
P.I. 2.380 6.080 10.052 8.344 0.682

USVT(2) 2.383 6.082 10.052 8.343 11.169

7

Ours 3.768 9.091 12.721 12.233 1.316
N.S. 6.596 6.372 17.611 9.760 126.270

Nethist 41.224 1574.245 59.567 96.247 20.238
USVT 3.644 7.580 12.613 11.696 11.640
SAS 20.552 22.529 90.000 0.000 1.701
P.I. 3.640 7.580 12.613 11.696 1.005

USVT(3) 3.644 7.580 12.613 11.696 11.640

Table 2: Results for rank ≥ 2 graphons across 100 independent trials.

approach. Notably, under certain regular conditions, the USVT method is nearly minimax

optimal in some scenarios regarding MSE, up to a logarithmic factor (see Theorems 2 and 4

in Xu [2018]). Therefore, it is particularly encouraging that our method achieves accuracy

comparable to USVT in practice while maintaining much lower computational complexity.

Importantly, our method operates without any tuning parameters, enhancing its ro-

bustness across various settings.

To illustrate the accuracy of our graphon estimation, we applied the algorithms for

estimating G1 and G2 as outlined at the end of Sections 3.1 and 3.2 to the third and

fourth settings. The results presented in Figure 1 demonstrate that the estimated G1 in

the third setting aligns almost perfectly with the theoretical values. Furthermore, both

estimated functions G1 and G2 closely match their theoretical counterparts, highlighting

the effectiveness of our method. It is noteworthy that the function G2 in the fourth setting

is continuous but not monotonic.

In the remainder of this section, we evaluate the performance of our method in esti-

mating connection probability matrices derived from sparse graphon models. Specifically,

13
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Figure 1: Estimation of graphons for the third and fourth settings.

we consider the scenario where Eij ∼ Bernoulli(ρnf(Ui, Uj)), with ρn → 0 indicating the

degree of sparsity. We utilize the functions f(x, y) from the previous 2nd, 3rd, 4th, and

5th settings, setting ρn = n−1/2. For comparison, we include the same four methods as

before, modifying the USVT method as suggested by Xu [2018] to ensure its adaptability

to sparse settings. The results are summarized in Tables 3, which demonstrate that our

method consistently outperforms the other five in terms of mean squared error (MSE).

Intuitively, our method is well-suited for handling sparse scenarios, as evident from

equation (7), which incorporates the sparsity parameter ρn. We plan to explore further

modifications of our proposed algorithm specifically tailored for sparse conditions, along

with the corresponding detailed theoretical analysis, in future work.

5 Discussion

In this paper, we present an effective and efficient estimation method for the additive

separable graphon (ASG) model based on subgraph counts. We provide theoretical justi-

fications for the methods applied to ASG(r) with fixed r, and evaluate their performance

through simulation studies.

There are several promising directions for future research. In our simulations, we found

that the performance of our method in sparse graphons is competitive. Therefore, inves-

tigating the convergence rate as well as optimality of our method in the context of sparse

graphons would be a valuable next step. Additionally, exploring the selection of “optimal”

subgraphs offers another important research avenue. Finally, it remains an open question

whether our method can be extended to cases where r diverges with n.
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ID Method
MSE

(×10−4)
Std. dev of

MSE (×10−6)
Max. error
(×10−2)

Std dev.of
max. error (×10−3)

2

Ours 0.115 0.401 2.560 3.367
N.S. 61.897 249.576 99.161 0.002

Nethist 0.391 1.536 2.112 2.926
USVT 0.352 2.524 1.790 0.017
SAS 0.946 5.704 99.16 0.013
P.I. 0.132 0.490 2.951 4.110

3

Ours 0.075 0.284 3.079 4.494
N.S. 40.084 119.792 99.968 0.093

Nethist 0.249 1.056 2.840 14.842
USVT 0.314 0.952 2.093 0.039
SAS 0.200 2.163 99.956 0.426
P.I. 0.099 0.445 4.255 6.704

4

Ours 0.043 0.398 3.840 8.423
N.S. 14.573 43.039 99.973 0.047

Nethist 0.111 0.642 2.485 12.126
USVT 0.102 0.648 2.202 0.075
SAS 0.078 0.945 89.227 253.955
P.I. 0.115 2.704 33.130 158.566

5

Ours 0.071 0.330 2.910 4.576
N.S. 34.490 115.091 99.993 0.039

Nethist 0.229 0.948 3.001 20.765
USVT 0.294 0.971 1.906 0.023
SAS 0.118 0.907 75.367 325.895
P.I. 0.170 4.392 21.174 101.657

Table 3: Results for sparse graphons characterized by ρn = n−1/2. Our method consistently
performs best in terms of MSE.

A Appendix

A.1 A variant algorithm and time complexity

The primary computational complexity of Algorithm 2 arises from counting lines and cycles

within the graph. Notably, counting paths that allow repeated nodes is considerably simpler

than counting simple paths (where nodes cannot repeat), as the former can be achieved

via matrix multiplication with a complexity of O(n2.373), see for example, Williams [2012].

Motivated by this observation, we define paths that permit node repetition and propose a

variant algorithm accordingly.

For i = 1, . . . , n, define the lines and cycles allowing repeated nodes as

L̃
(1)
i =

∑
i1

Eii1 , L̃
(a)
i =

∑
i1,··· ,ia

Eii1

a∏
j=2

Eij−1ij for a ≥ 2,

C̃
(a)
i =

∑
i1,··· ,ia−1

Eii1Eia−1i

a−1∏
j=2

Eij−1ij for a ≥ 3.
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L̃
(a)
i , C̃

(a)
i can be computed efficiently. Specifically, let Ea denote the ath power of the

adjacency matrix E, then we have L̃
(a)
i =

∑
j ̸=i(E

a)ij, C̃
(a)
i = (Ea)ii. The variant algorithm

(Algorithm 3) uses L̃
(a)
i , C̃

(a)
i instead of L

(a)
i , C

(a)
i .

Algorithm 3 Fast estimation procedure for {pij}ni,j=1 for ASG(r).

Require: The graph G = (V,E).

1: For i = 1, . . . , n, let L̃
(a)
i =

∑
j ̸=i(E

a)ij , 1 ≤ a ≤ r, C̃
(a)
i = (Ea)ii, 3 ≤ a ≤ r + 2.

2: Set L
(a)
i = L̃

(a)
i , C

(a)
i = C̃

(a)
i .

3: Follow from Line 2 of Algorithm 2 to estimate {p̂ij}ni,j=1.
4: Output {p̂ij}ni,j=1.

Remark 6 (Time complexity of Algorithm 3). Since all L̃
(a)
i and C̃

(a)
i for 1 ≤ i ≤ n and

1 ≤ a ≤ r can be computed using matrix multiplication, which has a time complexity of

O(n2.373), it directly follows that the overall time complexity of Algorithm 3 is also O(n2.373).

To analyze the theoretical properties, we present a key lemma showing that L̃
(a)
i and

L
(a)
i (as well as C̃

(a)
i and C

(a)
i ) are sufficiently close, such that their differences do not impact

the results of Theorem 3 and Theorem 4.

Lemma 1. For ASG(r), under the assumptions of Theorem 3, we have

max
1≤i≤n

max
1≤a≤r

∣∣∣∣∣ 1∏a
j=1(n− j)

(L̃
(a)
i − L

(a)
i )

∣∣∣∣∣ = op

(
1√
n

)
,

max
1≤i≤n

max
3≤a≤r+2

∣∣∣∣∣ 1∏a−1
j=1(n− j)

(C̃
(a)
i − C

(a)
i )

∣∣∣∣∣ = op

(
1√
n

)
.

With Lemma 1 established, it follows straightforwardly that the following theorem

holds.

Theorem 5. Theorem 3 and Theorem 4 remain valid when the fast estimation procedure

described in Algorithm 3 is applied.

A.2 A real data example

To demonstrate the effectiveness of our method, we applied it to a real data example of

contacts in a primary school. The data is collected by the SocioPatterns project1 with active

RFID devices, which generate a new data record every 20 seconds capturing information

from the preceding 20 seconds. Specifically, on October 1st, 2009, from 8:40 to 17:18,

contact data were collected for a total of 236 individuals, with a total of 60623 records. We

1http://www.sociopatterns.org
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Figure 2: Estimated connection probability matrix for the real data example.

use these data to construct a undirected simple graph and use our method to estimate the

underlining graphon structure. Specifically, let E denote the contact matrix, i.e.,

Ekl =

{
1 individuals k and l contacted at least once,

0 otherwise,

Firstly, we select the rank r by our Algorithm 3 with the threshold τ = 0.2. The results,

as shown in Table 4, leads us to select r = 4.

Rank r λ̂1 λ̂2 λ̂3 λ̂4 λ̂5

2 0.264 0.159
3 0.266 0.146 0.0593
4 0.271 0.118 0.118 −0.0992
5 0.272 0.117 0.0813 −0.0423 −0.00721

Table 4: Estimated eigenvalues from Algorithm 3 with respect to different choice of rank
r.

Subsequently, we estimated the connection probability matrix using Algorithm 2, and

the resulting heatmap is depicted in Figure 2. The smoothness of the heatmap is consistent

with expectations for real-world in-person interaction scenarios.

Assuming Assumption 2, we estimated the graphon function of the network, taking

G1 as the reference marginal graphon. The estimated functions h1, · · · , h4 are plotted in
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Figure 3: Estimated graphons for the real data example.

Figure 3. Then for any (u, v) ∈ [0, 1]2, the estimated value of graphon function f̂(u, v) can

be obtained from equation 9.

A.3 Results for rank-1 settings

We present the results for rank-1 graphons in Table 5.

A.4 Selecting r when it is unknown

In this section, we propose a method for selecting r when it is unknown. Since r̂ approx-

imates r by Theorem 3, we can start estimating from r = 1 and incrementally increase r.

When |λ̂k| is significantly larger than 0, but |λ̂i|, i ≥ k + 1 are close to 0, we select r = k.

The detailed selection procedure is summarized in Algorithm 4.

Algorithm 4 Selection procedure for r.

Require: The graph G = (V,E), threshold τ .

1: For i = 1, . . . , n, compute C̃
(3)
i . Set k = 1.

2: For i = 1, . . . , n, compute C̃
(k+3)
i .

3: Solve the system of equations in (5) with 3 ≤ a ≤ k + 3 and r = k + 1 to obtain (λ̂1, · · · , λ̂k+1).

4: If
∣∣∣ λ̂k+1

λ̂k

∣∣∣ ≤ τ, choose r = k and output r.

5: Set k = k + 1 and go back to Line 2.
6: Output r.
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ID Method
MSE

(×10−4)
Std. dev of

MSE (×10−6)
Max. error
(×10−2)

Std dev.of
max. error (×10−3)

Run time
(seconds)

1

Ours 1.275 3.871 5.817 4.955 0.121
N.S. 7.853 5.175 16.749 9.849 115.076

Nethist 4.237 8.330 5.980 11.474 16.705
USVT 1.282 3.863 5.837 4.994 13.587
SAS 19.120 16.865 85.000 0.000 1.273
P.I. 1.280 3.860 5.837 4.994 0.304

2

Ours 2.452 7.806 8.114 5.819 0.539
N.S. 12.033 9.750 17.617 8.275 115.757

Nethist 9.867 24.220 16.962 44.037 16.744
USVT 2.403 7.593 7.977 5.740 14.629
SAS 39.888 29.339 78.134 37.486 1.250
P.I. 2.400 7.590 7.977 5.740 0.274

3

Ours 1.973 6.794 10.163 8.537 0.259
N.S. 8.337 14.186 17.329 8.566 114.694

Nethist 7.942 27.962 17.094 10.368 20.288
USVT 1.919 6.530 9.395 7.146 13.758
SAS 26.987 77.248 94.849 20.701 1.241
P.I. 1.920 6.530 9.395 7.146 0.328

Table 5: Results for rank-1 graphons across 100 independent trials.

We apply Algorithm 4 to select r for the third and sixth settings in Table 1, with

τ = 0.2. The results are summarized in Table 6. From the results, it can be observed that

Algorithm 4 is effective in most cases.

ID True r
Estimated r

1 2 3 ≥ 4
3 1 100 0 0 0
6 2 0 92 0 8

Table 6: Results for selection of r for the third and sixth settings across 100 independent
trials.

A.5 Details of the power iteration method for ASG(r)

Suppose we want to estimate the leading r eigenpairs of a matrix A. The power iteration

algorithm can be used by iteratively applying the power method and deflating the matrix.

Beginning with A0 = A, each step k (from 1 to r) involves estimating the dominant eigen-

pair (λ̂k, v̂k) of Ak−1 using the power iteration method (with normalization of v̂k) and then

deflating the matrix via Ak = Ak−1 − λ̂kv̂kv̂
⊤
k . After r steps, the estimated eigenpairs are

used to reconstruct an approximation P̃ =
∑r

k=1 λ̂kv̂kv̂
⊤
k . Finally, the estimated probabil-
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ity connection matrix P̂ is obtained by applying an element-wise thresholding operation to

P̃ : pij = 1 ∧ (0 ∨ p̃ij), ensuring entries fall within the [0, 1] probability range. The whole

algorithm is

Algorithm 5 Iterative Power Iteration for ASG(r).

1: Input: adjacency matrix A, rank r, maximum number of iterations N , tolerance ϵ
2: Output: estimated probability connection matrix P̂ .
3: Initialize A0 ← A
4: for k = 1 to r do
5: Initialize vector x0 of length n with all ones. Normalize x0 ← x0

∥x0∥2 .
6: for i = 1 to N do
7: xi ← Ak−1xi−1

8: Normalize xi ← xi

∥xi∥2
9: if ∥xi − xi−1∥2 < ϵ then:

10: break;
11: end if
12: xi−1 ← xi

13: end for
14: With deflation technique, compute eigenvalue λ̂k ← x⊤

i Ak−1xi. Set eigenvector
v̂k ← xi. Update Ak ← Ak−1 − λ̂kv̂kv̂

⊤
k .

15: end for
16: Compute P̃ =

∑r
k=1 λ̂kv̂kv̂

⊤
k , and take p̂ij = 1 ∧ (0 ∨ P̃ij) for 1 ≤ i, j ≤ n.

17: return estimated probability connection matrix P̂ = {p̂ij}1≤i,j≤n.

For practice, we set the maximum number of iterations to 500 and the convergence

threshold to 10−6 (measured by the norm of the difference between successive vectors, see

the algorithm in the response to the next question). For all scenarios discussed in our

paper, the actual number of iterations is listed in the tables below, and we have added the

tables in the appendix.

The results indicate that in most scenarios, the number of iterations required for con-

vergence is relatively small. However, there are exceptions in which the power iteration

does not achieve convergence within 500 iterations.

ID λ̂1 iteration Std.Dev. λ̂2 iteration Std.Dev. λ̂3 iteration Std.Dev.
1 6 0
2 5 0
3 5.01 0.0995
4 9 0 17.99 0.5744
5 6 0 500 0
6 15.34 0.6200 8 0
7 27.83 1.8871 15.1 0.7416 8 0

Table 7: The number of iterations for dense settings across 100 independent trials.
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ID λ̂1 iteration Std.Dev. λ̂2 iteration Std.Dev.
2 13 0
3 17.15 0.3571
4 31.91 1.8713 500 0
5 17.98 0.3995 500 0

Table 8: The number of iterations for sparse settings across 100 independent trials.

A.6 Proofs

Proof of Theorem 1. By (2) and (3), we have

sup
i

∣∣∣∣G1(Ui)−
1

c(n− 1)
di

∣∣∣∣ = Op(
√
log(n)/n) (10)

where c = λ1

∫ 1

0
G1(u)du.

By the property of U statistics (see for example, Theorem 4.2.1 in Korolyuk [2013]), we

have

1

n(n− 1)

∑
i,j:i ̸=j

f(Ui, Uj) = Ef(Ui, Uj) +Op(n
−1/2). (11)

Moreover, note that

E

( 1

n(n− 1)

∑
i,j:i ̸=j

Eij −
1

n(n− 1)

∑
i,j:i ̸=j

f(Ui, Uj)

)2 ∣∣∣∣U1, · · · , Un

 (12)

≲
1

n4

∑
i1,i2,j1,j2

E
(
(Ei1j1 − f(Ui1 , Uj1))(Ei2j2 − f(Ui2 , Uj2)

∣∣∣∣U1, · · · , Un

)
(13)

≲
1

n4

∑
i1,i2

E
(
(Ei1j1 − f(Ui1 , Uj1))

2

∣∣∣∣U1, · · · , Un

)
= O

(
1

n2

)
, (14)

where the second inequality follows from the fact that the terms are nonzero only when

i1 = i2, j1 = j2, and the last equality is due to the boundedness of each term. By combining

(11) and (12), we have that

1

n(n− 1)

∑
i,j:i ̸=j

Eij = λ1

(∫ 1

0

G1(u)du

)2

+Op(n
−1/2). (15)
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Similarly,

1

n(n− 1)3

∑
i,j:i ̸=j

didj = λ2
1

(∫ 1

0

G1(u)du

)4

+Op(n
−1/2). (16)

Combining (15) and (16), we obtain that

(n− 1)2
∑

i,j:i ̸=j Eij∑
i,j:i ̸=j didj

=
1

λ1

(∫ 1

0
G1(u)du

)2 +Op(n
−1/2).

Hence,

sup
i

∣∣∣∣∣G1(Ui)−

√∑
i,j:i ̸=j Eij∑
i,j:i ̸=j didj

di√
λ1

∣∣∣∣∣ (17)

≤ sup
i

∣∣∣∣G1(Ui)−
1

c(n− 1)
di

∣∣∣∣+ sup
i

∣∣∣∣∣
√ ∑

i,j:i ̸=j Eij∑
i,j:i ̸=j didj

di√
λ1

− 1

c(n− 1)
di

∣∣∣∣∣ (18)

≤ sup
i

∣∣∣∣G1(Ui)−
1

c(n− 1)
di

∣∣∣∣+
∣∣∣∣∣
√

(n− 1)2

∑
i,j:i ̸=j Eij∑
i,j:i ̸=j didj

1√
λ1

− 1

λ1

∫ 1

0
G1(u)du

∣∣∣∣∣ (19)

= Op(
√
log(n)/n). (20)

By the definition of graphon function, supu1,u2∈[0,1] λ1G1(u1)G1(u2) ≤ 1. As a result,

supu∈[0,1]
√
λ1G1(u) ≤ 1. Then for c1 =

∑
i,j:i ̸=j Eij/

∑
i,j:i ̸=j didj, we have

sup
i,j
|p̂ij − pij| ≤ sup

i,j
|c1didj − λ1G1(Ui)G1(Uj)|

≤ sup
i,j
|
√
c1di −

√
λ1G1(Ui)|

√
c1dj + sup

i,j
|
√
c1dj −

√
λ1G1(Uj)|

√
λ1G1(Ui)

≤ sup
i,j
|
√
c1di −

√
λ1G1(Ui)||

√
c1dj −

√
λ1G1(Uj)|

+ 2 sup
i,j
|
√
c1dj −

√
λ1G1(Uj)|

√
λ1G1(Ui)

= Op(
√
log(n)/n).
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Proof of theorem 2. It suffices to show that

sup
u∈[0,1]

∣∣∣∣∣G†
1(u)−

1

(n− 1)λ1

∫ 1

0
G1(v)dv

h(u)

∣∣∣∣∣ a.s.→ 0, (21)

sup
u∈[0,1]

∣∣∣∣∣G†
1(u)−

1

(n− 1)λ1

∫ 1

0
G1(v)dv

h(u)

∣∣∣∣∣ = Op(
√
log(n)/n), (22)

then the theorem holds following the similar proof of Theorem 1 via following from (10) to

(17) to replace (n− 1)λ1

∫ 1

0
G1(v)dv by

√∑
i,j:i ̸=j Eij/(λ1

∑
i,j:i ̸=j didj), and via modifying

the argument on taking maximum over all Ui to taking supreme over all u ∈ [0, 1]. To show

(21) and (22), we consider the following two steps.

(Step 1.) In this step, we prove that

sup
u∈{1,2,··· ,n}

|h (u/(n+ 1)) /((n− 1)λ1

∫ 1

0

G1(v)dv)−G†
1(u/(n+ 1))| a.s.→ 0,

and

sup
u∈{1,2,··· ,n}

|h (u/(n+ 1)) /((n− 1)λ1

∫ 1

0

G1(v)dv)−G†
1(u/(n+ 1))| = Op(

√
log(n)/n).

Let U(1), · · · , U(n) denote the rearrangement of U1, · · · , Un
i.i.d.∼ Uniform(0, 1) such that

U(1) ≤ · · · ≤ U(n). By Lemma 3, we have supi=1,··· ,n |U(i) − i/(n + 1)| a.s.→ 0. By Kawohl

[2006] (chapter II.2), the rearrangement function G†
1 is Lipschitz continuous with constant

M as long as G1 is Lipschitz continuous with constant M . As a consequence,

sup
i=1,··· ,n

|G†
1(U(i))−G†

1(i/(n+ 1))| ≤M sup
i=1,··· ,n

|U(i) − i/(n+ 1)| a.s.→ 0. (23)

Moreover, via using the proof of Lemma 1 in Chan and Airoldi [2014], supi=1,··· ,n |U(i) −
i/(n+ 1)| = Op(

√
log(n)/n), which also shows that

sup
i=1,··· ,n

|G†
1(U(i))−G†

1(i/(n+ 1))| = Op(
√

log(n)/n). (24)

By definition, for i = 1, · · · , n, h(i/(n + 1)) = dσ(i). By (10) (more precisely, the similar

argument of (10) applied to G†), (23) and Lemma 4, we have that

sup
i∈{1,2,··· ,n}

∣∣∣∣∣h
(

i

n+ 1

)
1

(n− 1)λ1

∫ 1

0
G1(v)dv

−G†
1

(
i

n+ 1

)∣∣∣∣∣ a.s.→ 0.
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Similarly, via (10), (24) and Lemma 4 we have

sup
i∈{1,2,··· ,n}

∣∣∣∣∣h
(

i

n+ 1

)
1

(n− 1)λ1

∫ 1

0
G1(v)dv

−G†
1

(
i

n+ 1

)∣∣∣∣∣ = Op(
√

log(n)/n)

(Step 2.) In this step, we prove (21). We note that

sup
u∈[0,1/(n+1)]

∣∣∣∣∣G†
1(u)−

1

(n− 1)λ1

∫ 1

0
G1(v)dv

h(u)

∣∣∣∣∣
≤

∣∣∣∣∣G†
1

(
1

n+ 1

)
− h(1/(n+ 1))

(n− 1)λ1

∫ 1

0
G1(v)dv

∣∣∣∣∣+ sup
u∈[0,1/(n+1)]

∣∣∣∣G†
1

(
1

n+ 1

)
−G†

1 (u)

∣∣∣∣
≤

∣∣∣∣∣G†
1

(
1

n+ 1

)
− h(1/(n+ 1))

(n− 1)λ1

∫ 1

0
G1(v)dv

∣∣∣∣∣+ M

n+ 1

a.s.→ 0, and = Op(
√

log(n)/n)

Similarly, we have

sup
u∈[n/(n+1),1]

∣∣∣∣∣G†
1(u)−

1

(n− 1)λ1

∫ 1

0
G1(v)dv

h(u)

∣∣∣∣∣ a.s.→ 0, and = Op(
√

log(n)/n).

For u ∈ (1/(n+ 1), n/(n+ 1)), let k = ⌊u(n+ 1)⌋, then∣∣∣∣∣G†
1(u)−

h(u)

(n− 1)λ1

∫ 1

0
G1(v)dv

∣∣∣∣∣ ≤ (k + 1− u(n+ 1))

∣∣∣∣∣G†
1(u)−

dσ(k)

(n− 1)λ1

∫ 1

0
G1(v)dv

∣∣∣∣∣
+ (u(n+ 1)− k)

∣∣∣∣∣G†
1(u)−

dσ(k+1)

(n− 1)λ1

∫ 1

0
G1(v)dv

∣∣∣∣∣ ≤ (k + 1− u(n+ 1))|G†
1(u)−G†

1(k/(n+ 1))|

+ (k + 1− u(n+ 1))

∣∣∣∣∣G†
1(k/(n+ 1))− h(k/(n+ 1))

(n− 1)λ1

∫ 1

0
G1(v)dv

∣∣∣∣∣
+ (u(n+ 1)− k)

∣∣∣∣∣G†
1((k + 1)/(n+ 1))− h((k + 1)/(n+ 1))

(n− 1)λ1

∫ 1

0
G1(v)dv

∣∣∣∣∣
+ (u(n+ 1)− k) |G†

1(u)−G†
1((k + 1)/(n+ 1))|

≤ M

n+ 1
+ sup

i∈{1,2,··· ,n}

∣∣∣∣∣h
(

i

n+ 1

)
1

(n− 1)λ1

∫ 1

0
G1(v)dv

−G†
1

(
i

n+ 1

)∣∣∣∣∣ .
Therefore, by the result from (Step 1),

sup
u∈[1/(n+1),n/(n+1)]

∣∣∣∣∣G†
1(u)−

1

(n− 1)λ1

∫ 1

0
G1(v)dv

h(u)

∣∣∣∣∣ a.s.→ 0, and = Op(
√

log(n)/n).

The proof is then complete.
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Proof of Theorem 3. Without loss of generality, we assume that
∫ 1

0
Gk(u)du ≥ 0, 1 ≤ k ≤ r,

because we can replace Gk by −Gk if
∫ 1

0
Gk(u)du ≤ 0.

For i = 1, · · · , n, recall that

L
(1)
i =

∑
i1

Aii1 ,

L
(a)
i =

∑
i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

Eii1

a∏
j=2

Eij−1ij for a ≥ 2,

C
(a)
i =

∑
i1,··· ,ia−1 distinct ,ik ̸=i,1≤k≤a−1

Eii1Eia−1i

a−1∏
j=2

Eij−1ij for a ≥ 3.

Note that P(Eij = 1|Ui, Uj) =
∑r

k=1 λkGk(Ui)Gk(Uj) and
∫ 1

0
G2

i (u)du = 1 for 1 ≤ i ≤ r,

we then have

1∏a
j=1(n− j)

E(L(a)
i | Ui) =

r∑
k=1

λa
kGk(Ui)

∫ 1

0

Gk(u) du for 1 ≤ a ≤ r,

1∏a−1
j=1(n− j)

E(C(a)
i | Ui) =

r∑
k=1

λa
kG

2
k(Ui) for 3 ≤ a ≤ r + 2. (25)

We show the theorem via two steps.

(Step 1.) We first prove that max1≤k≤r |λ̂k−λk| = Op(n
−1/2),max1≤k≤r

∣∣∣yk − ∫ 1

0
Gk(u)du

∣∣∣ =
Op(n

−1/2).

By (25), we have

1∏a
j=1(n− j)

E(L(a)
i ) =

r∑
k=1

λa
k

(∫ 1

0

Gk(u) du

)2

for 1 ≤ a ≤ r,

1∏a−1
j=1(n− j)

E(C(a)
i ) =

r∑
k=1

λa
k for 3 ≤ a ≤ r + 2. (26)

Moreover, by implicit function theorem, the system of equations (26) in terms of λk,
(∫ 1

0
Gk(u)du

)2
, 1 ≤

k ≤ r, has a unique solution if∣∣∣∣∣∣∣∣
λ2
1 λ2

2 · · · λ2
r

... · · · · · · ...

λr+1
1 λr+1

2 · · · λr+1
r

∣∣∣∣∣∣∣∣ ̸= 0,

∣∣∣∣∣∣∣∣
λ1 λ2 · · · λr

... · · · · · · ...

λr
1 λr

2 · · · λr
r

∣∣∣∣∣∣∣∣ ̸= 0, (27)

which is implied by λk > 0 for 1 ≤ k ≤ r, λi ̸= λj, i ̸= j, assumed in Assumption 1. By
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Lemma 5, we have

1∏a
j=0(n− j)

n∑
i=1

(L
(a)
i − E(L(a)

i )) = Op(n
−1/2) for 1 ≤ a ≤ r,

1∏a−1
j=0(n− j)

n∑
i=1

(C
(a)
i − E(C(a)

i )) = Op(n
−1/2) for 3 ≤ a ≤ r + 2.

Then by Lemma 6, we have

max
1≤k≤r

|λ̂k − λk| = Op(n
−1/2).

By Lemma 7, we have

max
1≤k≤r

∣∣∣∣yk − ∫ 1

0

Gk(u)du

∣∣∣∣ = Op(n
−1/2).

We mention that there is no square root ambiguity since we assume
∫ 1

0
Gi(u)du ≥ 0, i = 1, 2.

(Step 2.) In this step, we prove that supi,j |p̂ij − pij| = Op(
√

log(n)/n). Recall

that (G1(Ui), · · · , Gr(Ui)) is estimated by solving the system of equations with respect to

(Ĝ1(Ui), · · · , Ĝr(Ui)):

1∏a
j=1(n− j)

L
(a)
i =

r∑
k=1

λ̂a
kykĜk(Ui) for 1 ≤ a ≤ r

with λ̂a
k, yk, 1 ≤ k ≤ r defined in (6). Note that for the above linear equation, we have

max
i

max
k
|Ĝk(Ui)−Gk(Ui)| = Op(

√
log(n)/n) (28)

as long as maxi maxa |L(a)
i − E(L(a)

i |Ui)|/
∏a

j=1(n − j) = Op(
√
log(n)/n), which is indeed

indicated by Lemma 8.

According to (8), we have for every 1 ≤ k ≤ r,

G̃k(Ui)− Ĝk(Ui) =
Ĝk(Ui)√∑n
i=1 Ĝ

2
k(Ui)/n

− Ĝk(Ui) = Ĝk(Ui)

 1√∑n
i=1 Ĝ

2
k(Ui)/n

− 1

 .

(29)

Since Ui’s are i.i.d., there is
∑n

i=1 Gk(Ui)
2/n− 1 = Op(n

−1/2). Hence we have

n∑
i=1

Ĝk(Ui)
2/n− 1 =

n∑
i=1

Ĝk(Ui)
2/n−

n∑
i=1

Gk(Ui)
2/n+

n∑
i=1

Gk(Ui)
2/n− 1 = Op(

√
log(n)/n),
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which implies that
1√∑n

i=1 Ĝ
2
k(Ui)/n

− 1 = Op(
√
log(n)/n). (30)

By Assumption 1, Gk are all bounded by K. Combining equation (30), (29), (28) and

noting that r = O(1), we have

max
k

max
i
|G̃k(Ui)− Ĝk(Ui)| = Op(

√
log(n)/n).

Therefore

max
k

max
i
|G̃k(Ui)−Gk(Ui)| = Op(

√
log(n)/n).

As a result, in terms of the estimation of connection probabilities, we have

sup
i,j
|p̂ij − pij| = sup

i,j
|[1 ∧ (0 ∨ (

r∑
k=1

λ̂kG̃k(Ui)G̃k(Uj))]

− (
r∑

k=1

λkGk(Ui)Gk(Uj))| = Op(
√
log(n)/n).

Proof of Lemma 1. We only show that

max
1≤i≤n

max
1≤a≤r

∣∣∣∣∣ 1∏a
j=1(n− j)

(L̃
(a)
i − L

(a)
i )

∣∣∣∣∣ = op

(
1√
n

)
,

as the result for C̃
(a)
i follows similarly.

By definition, we have

L̃
(a)
i − L

(a)
i =

∑
i1,··· ,ia∈M

Ei,i1

a∏
j=2

Eij−1,ij

whereM = {At least two of the values i, i1, · · · , ia are identical}. Then

1∏a
j=1(n− j)

|L̃(a)
i − L

(a)
i | ≤

1∏a
j=1(n− j)

∑
i1,··· ,ia∈M

1 =
O(na−1)∏a
j=1(n− j)

.

As a result,

max
1≤i≤n

max
1≤a≤r

1∏a
j=1(n− j)

|L̃(a)
i − L

(a)
i | ≤

O(na−1)∏a
j=1(n− j)

= Op

(
1

n

)
.
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A.7 Technical lemmas

Lemma 2. For ASG(2) model with f(u, v) = λ1G1(u)G1(v) + λ2G2(u)G2(v) with G1, G2

bounded by a constant M > 0, then we have

sup
i=1,··· ,n

|di − E(di|Ui)|
n− 1

= Op(
√

log(n)/n),

where di is the degree of ith node. Note that the model reduces to ASG(1) when we set

λ2 = 0.

Proof. We first note that

sup
i=1··· ,n

∣∣∣∣∣ 1

n− 1

∑
j:j ̸=i

(λ1G1(Ui)G1(Uj) + λ2G2(Ui)G2(Uj))

−λ1G1(Ui)

∫ 1

0

G1(u)du− λ2G2(Ui)

∫ 1

0

G2(u)du

∣∣∣∣
≤ λ1M

(∣∣∣∣∣ 1

n− 1

n∑
j=1

G1(Uj)−
∫ 1

0

G1(u)du

∣∣∣∣∣+ 1

n− 1
M

)

+ λ2M

(∣∣∣∣∣ 1

n− 1

n∑
j=1

G1(Uj)−
∫ 1

0

G1(u)du

∣∣∣∣∣+ 1

n− 1
M

)
= Op(n

−1/2),

where the last result follows from Slutsky’s Theorem. Then it suffices to show that

sup
i=1··· ,n

∣∣∣∣∣ 1

n− 1

∑
j:j ̸=i

(I (Uij ≤ λ1G1(Ui)G1(Uj) + λ2G2(Ui)G2(Uj)) (31)

−λ1G1(Ui)G1(Uj)− λ2G2(Ui)G2(Uj))| = Op(
√
log(n)/n), (32)

where Uij, i ≤ j are i.i.d. uniformly distributed random variables on [0, 1], and Uji = Uij

for i > j. Let

Zi =
1

n− 1

n∑
j=1

(I (Uij ≤ λ1G1(Ui)G1(Uj) + λ2G2(Ui)G2(Uj))

−λ1G1(Ui)G1(Uj)− λ2G2(Ui)G2(Uj)) .

By Hoeffding’s inequality in Theorem 2.6.2 of Vershynin [2018], we have for any t > 0,

P (
√
n|Zi| > t|U1, · · · , Un) ≤ 2 exp(−ct2) where c > 0 is an absolute constant. Then

P (
√
n|Zi| > t) = E (P (

√
n|Zi| > t|U1, · · · , Un)) ≤ 2 exp(−ct2). As a result,

√
nZi are
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sub-gaussian random variables. Then we have Emaxi=1··· ,n |Zi| = O(
√
log(n)/

√
n), which

indicates that maxi=1··· ,n |Zi| = Op(
√

log(n)/n).

Lemma 3. Suppose that Ui
i.i.d.∼ Uniform(0, 1), i = 1, · · · , n. Let U(i) denote the i-th

smallest value among U1, · · · , Un, i.e., U(1) ≤ U(2) ≤ · · · ≤ U(n). Then

sup
i

∣∣∣∣U(i) −
i

n+ 1

∣∣∣∣ a.s.→ 0.

Proof. It is obvious that U(i) ∼ Beta(i, n − i + 1) with a probability density function

p(x) = xi−1(1−x)n−1/
∫ 1

0
xi−1(1−x)n−1dx. Then we derive that for any ε > 0, by Markov’s

inequality,

P
(∣∣∣∣U(i) −

i

n+ 1

∣∣∣∣ ≥ ε

)
≤ 1

ε6
E
∣∣∣∣U(i) −

i

n+ 1

∣∣∣∣6
=

1

ε6
5i(n− i+ 1)A

(n+ 1)6(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6)

≤ 1

ε6
5n2A

(n+ 1)11

where A = 24(n−i+1)4+2i(n−i+1)3(13n−13i+1)+i2(n−i+1)2(24−8(n−i+1)+3(n−
i+1)2)+2i3(n−i+1)2(3(n−i+1)2−4(n−i+1)−12)+i4(24+26(n−i+1)+3(n−i+1)2).

Note that A ≤ 12n6 + 36n5 + 24n4 ≤ 72n6. Then we have

∞∑
n=1

P
(
sup
i

∣∣∣∣U(i) −
i

n+ 1

∣∣∣∣ ≥ ε

)
≤

∞∑
n=1

n∑
i=1

P
(∣∣∣∣U(i) −

i

n+ 1

∣∣∣∣ ≥ ε

)
≤ 1

ε6

∞∑
n=1

n∑
i=1

360n8

(n+ 1)11

≤ 360

ε6

∞∑
n=1

1

n2
<∞.

Therefore, by the Borel-Cantelli lemma, the result follows.

Lemma 4. Let G(u), u ∈ [0, 1] be a monotonically non-decreasing, Lipschitz continuous

function with Lipschitz constant L > 0. Let ai := G(i/(n+ 1)), i = 1, · · · , n. Suppose that

there exists a sequence of random variables b1, · · · , bn such that supi=1,··· ,n |bi−ai|
a.s.→ 0. Let

α be a one-to-one permutation such that bα(1) ≤ bα(2) ≤ · · · ≤ bα(n). Let âi := bα(i). Then we

have supi |âi−ai|
a.s.→ 0. Moreover, if supi=1,··· ,n |bi−ai| = Op(gn) then supi |âi−ai| = Op(gn)

for some gn = o(1), ngn →∞.

Proof. Let Mn = supi=1,··· ,n |bi− ai|, then Mn
a.s.→ 0. Assume without loss of generality that

1/n = oa.s.(Mn). Let Kn be a non-negative random variable such that Kn
a.s.→ 0, 3Mn ≤
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Kn ≤ 4Mn, 1/n = oa.s.(Kn). For any i = 1, · · · , n, we have

|âi − ai| = |bα(i) − ai| ≤ |aα(i) − ai|+Mn.

First, consider the case where α(i) ≥ i. Assume, for the sake of contradiction, that aα(i) −
ai > Kn. Then for j = 1, 2, · · · , i+ 1, we derive that

bα(i) ≥ aα(i) −Mn > aj −
L

n+ 1
+Kn −Mn ≥ bj −

L

n+ 1
+Kn − 2Mn,

where for the second inequality we use the monotonicity. By the construction of Kn, with

probability 1, when n is sufficiently large, we have bα(i) > bj, j = 1, 2, · · · , i + 1. This

implies that there are at least i+1 values that are smaller than bα(i), which contradicts the

definition of α. Therefore, aα(i) − ai ≤ Kn.

Similarly, for the case where α(i) ≤ i, we have that aα(i) − ai ≥ −Kn.

Then we conclude that

sup
i
|âi − ai| = Oa.s.(Kn) +Mn

a.s.→ 0.

The statement of Op follows the exact same argument.

Lemma 5. Under the assumptions of Theorem 3, we have

1∏a
j=0(n− j)

n∑
i=1

(L
(a)
i − E(L(a)

i )) = Op(n
−1/2) for 1 ≤ a ≤ r,

1∏a−1
j=0(n− j)

n∑
i=1

(C
(a)
i − E(C(a)

i )) = Op(n
−1/2) for 3 ≤ a ≤ r + 2,

where L
(a)
i , C

(a)
i are defined in Section 3.2.

Proof. We only show that

1∏a
j=0(n− j)

n∑
i=1

(L
(a)
i − E(L(a)

i )) = Op(n
−1/2) for 1 ≤ a ≤ r,

as the results for C
(a)
i follows similarly.

Note that E(Eij|Ui, Uj) = f(Ui, Uj), and that Eij is conditional independent of Ei1,j1
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when (i, j) ̸= (i1, j1). Then we derive that

1(∏a
j=0(n− j)

)2E
( n∑

i=1

L
(a)
i −

n∑
i=1

E(L(a)
i |U1, · · · , Un)

)2

|U1, · · · , Un


≲

1

n2a+2

∑
i,i1,··· ,ia,k,k1,··· ,ka

E

((
Eii1

a∏
j=2

Eij−1ij − f(Ui, Ui1)
a∏

j=2

f(Uij−1
, Uij)

)
(
Ekk1

a∏
j=2

Ekj−1kj − f(Uk, Uk1)
a∏

j=2

f(Ukj−1
, Ukj)

)∣∣∣∣U1, · · · , Un

)

≲
n2a

n2a+2
=

1

n2
.

Since
∑n

i=1 L
(a)
i ≤

∏a
j=0(n− j), we have

1∏a
j=0(n− j)

n∑
i=1

(L
(a)
i − E(L(a)

i |U1, · · · , Un)) = Op

(
1

n

)
. (33)

Moreover, by the property of U-statistics (see for example, Theorem 4.2.1 in Korolyuk

[2013]), we have∑
i,i1,··· ,ia f(Ui, Ui1)

∏a
j=2 f(Uij−1

, Uij)∏a
j=0(n− j)

=
E
∑

i,i1,··· ,ia f(Ui, Ui1)
∏a

j=2 f(Uij−1
, Uij)∏a

j=0(n− j)
+Op(n

−1/2).

(34)

Note that
n∑

i=1

E(L(a)
i |U1, · · · , Un) =

∑
i,i1,··· ,ia

f(Ui, Ui1)
a∏

j=2

f(Uij−1
, Uij).

Then the result follows by combining (34) with (33).

Lemma 6. Suppose that x1, . . . , xr are r real numbers that satisfies |x1| > |x2| > · · · >
|xr| > 0. Let ϵ3,n, . . . , ϵr+2,n be r random variables satisfying maxi |ϵi,n| = Op(n

−1/2). Then

the solution (x̃1, . . . , x̃r) for the following system of equations:

r∑
k=1

x̃a
k =

r∑
k=1

xa
k + ϵa,n for 3 ≤ a ≤ r + 2 (35)

satifies

max
i
|x̃i − xi| = Op(1/

√
n).

Proof. Let ∆i = x̃i − xi, 1 ≤ i ≤ r. By implicit function theorem, the system of equations

(35) has one unique solution with probability tending to 1. Moreover, by the continuous
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mapping theorem, we have ∆i = op(1). By the definition of ϵi,n, for any ε > 0, there exists

a finite M and a finite N such that

P(max
i
|
√
nϵi| > M) < ε,∀n > N.

Therefore, it suffices to show that

P(max
i
|∆i| ≤ Cmax

i
|ϵi,n|)→ 1 (36)

for some constant C > 0. Note that

r∑
k=1

x̃a
k −

r∑
k=1

xa
k =

r∑
k=1

(xk +∆k)
a −

r∑
k=1

xa
k =

r∑
k=1

axa−1
k ∆k +Op(max

k
∆2

k).

We then calculate that

r∑
k=1

axa−1
k ∆k = ϵ̃a,n for 3 ≤ a ≤ r + 2

where ϵ̃a,n = δa + ϵa,n, δa = Op(maxi ∆
2
i ). For the above linear system of equations, by our

assumption on xi (similar to the arguments in (27)), it has one unique solution with the

form

∆i =
r+2∑
j=3

ai,j ϵ̃j,n (37)

where ai,j are constants depend on x1, . . . , xr only. By combining (37) and the fact that

maxa |δa| = Op(maxi ∆
2
i ),∆i = op(1), we conclude that (36) follows.

Lemma 7. Suppose that x1, . . . , xr are r real numbers that satisfies |x1| > |x2| > · · · >
|xr| > 0, x̃1, . . . , x̃r are r random variables that satisfies maxi |x̃i − xi| = Op(1/

√
n).

Let y1, . . . , yr be r non-zero real numbers, ϵ1,n, . . . , ϵr,n be r random variables satisfying

maxi |ϵi,n| = Op(n
−1/2). Then the solution (ỹ1, · · · , ỹr) for the following system of equa-

tions with respect to (y1, · · · , yr):

ya ≥ 0,
r∑

k=1

x̃a
kỹ

2
k =

r∑
k=1

xa
ky

2
k + ϵa,n for 1 ≤ a ≤ r (38)

satifies

max
i
|ỹi − yi| = Op(1/

√
n).
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Proof. Note that

x̃a
kỹ

2
k − xa

ky
2
k = (x̃a

k − xa
k)y

2
k + x̃a

k(ỹ
2
k − y2k).

Since maxi |x̃i − xi| = Op(1/
√
n), we have maxi |x̃a

i − xa
i | = Op(1/

√
n). Then (38) reduces

to

ya ≥ 0,
r∑

k=1

x̃a
k(ỹ

2
k − y2k) = ϵ̃a,n for 1 ≤ a ≤ r

where maxa |ϵ̃a,n| = Op(n
−1/2). Moreover, since maxk |x̃a

k| = Op(1), by noticing that the

above system of equations is a linear system with respect to ỹ2k − y2k, 1 ≤ k ≤ r, and

that r = O(1), we have maxk |ỹ2k − y2k| = Op(n
−1/2). Finally, recalling that y1, · · · , yr are

non-zero, we have maxk |ỹk − yk| = Op(n
−1/2).

Lemma 8. Under the assumptions of Theorem 3, we have

max
1≤i≤n

max
1≤a≤r

|L(a)
i − E(L(a)

i |Ui)|/
a∏

j=1

(n− j) = Op(
√
log(n)/n)

where

L
(1)
i =

∑
i1

Eii1 , L
(a)
i =

∑
i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

Eii1

a∏
j=2

Eij−1ij for a ≥ 2.

Proof. We divide the proof into two steps. In Step 1, we show that

1∏a
j=1(n− j)

max
i
|L(a)

i − Si,0| = Op(
√

log(n)/n)

where

Si,0 =
∑

i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

f(Ui, Ui1)
a∏

j=2

f(Uij−1
, Uij).

In Step 2, we show that

1∏a
j=1(n− j)

max
i
|Si,0 − Ti,1| = Op(n

−1/2)

where

Ti,1 = E

[ ∑
i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

f(Ui, Ui1)
a∏

j=2

f(Uij−1
, Uij)

∣∣∣∣Ui

]
= E(L(a)

i |Ui).

Then the proof is complete by combining the above two equations and noticing that r is
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bounded.

Step 1. Let

Si,a−1 =
∑

i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

Eii1

a−1∏
j=2

Eij−1ijf(Uia−1 , Uia).

Then

1∏a
j=1(n− j)

(L
(a)
i − Si,a−1) =

1∏a
j=1(n− j)

∑
i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

Eii1

a−1∏
j=2

Eij−1ij(Eia−1ia − f(Uia−1 , Uia)).

(39)

Notice that Eia−1ia = I(Uia−1,ia ≤ f(Uia−1 , Uia)) is binary, Uia−1,ia ∼ Uniform(0, 1) inde-

pendently, and that Uij is independent of Uk for any i, j, k. By Hoeffding’s inequality in

Theorem 2.6.2 of Vershynin [2018], we have for any t > 0,

P

 1√
n− a

∣∣∣∣∣∣
∑

ia ̸=i,i1,··· ,ia−1

(Eia−1ia − f(Uia−1 , Uia))

∣∣∣∣∣∣ ≥ t

∣∣∣∣U1, · · · , Un

 ≤ 2 exp(−ct2)

where c > 0 is an absolute constant. Then

P

 1√
n− a

∣∣∣∣∣∣
∑

ia ̸=i,i1,··· ,ia−1

(Eia−1ia − f(Uia−1 , Uia))

∣∣∣∣∣∣ ≥ t


= E

P

 1√
n− a

∣∣∣∣∣∣
∑

ia ̸=i,i1,··· ,ia−1

(Eia−1ia − f(Uia−1 , Uia))

∣∣∣∣∣∣ ≥ t

∣∣∣∣U1, · · · , Un

 ≤ 2 exp(−ct2).

As a result, 1√
n−a

∣∣∣∑ia ̸=i,i1,··· ,ia−1
(Eia−1ia − f(Uia−1 , Uia))

∣∣∣ are sub-gaussian random vari-

ables, and we have Emaxia−1

∣∣∣∑ia ̸=i,i1,··· ,ia−1
Eia−1ia − f(Uia−1 , Uia)

∣∣∣ /(n−a) = O(
√

log(n)/n).

By recalling (39) and the fact that Eij’s are binary, we have

1∏a
j=1(n− j)

Emax
i
|L(a)

i − Si,a−1| = O(
√
log(n)/n).

Similarly, let

Si,a−2 =
∑

i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

Eii1

a−2∏
j=2

Eij−1ijf(Uia−2 , Uia−1)f(Uia−1 , Uia).
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Then

1∏a
j=1(n− j)

(Si,a−1 − Si,a−2) =
1∏a

j=1(n− j)

∑
i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

Eii1×

a−2∏
j=2

Eij−1ij(Eia−2ia−1 − f(Uia−2 , Uia−1))f(Uia−1 , Uia)

=
1∏a−1

j=1(n− j)

∑
i1,··· ,ia−1 distinct ,ik ̸=i,1≤k≤a−1

Eii1×

a−2∏
j=2

Eij−1ij(Eia−2ia−1 − f(Uia−2 , Uia−1))
1

n− a

∑
ia

f(Uia−1 , Uia).

(40)

By Hoeffding’s inequality and noticing that the terms (Eia−2ia−1−f(Uia−2 , Uia−1))
1

n−a

∑
ia
f(Uia−1 , Uia)

are bounded, we have for any t > 0,

P

 1√
n− a+ 1

∣∣∣∣∣∣
∑
ia−1

(Eia−2ia−1 − f(Uia−2 , Uia−1))
1

n− a

∑
ia

f(Uia−1 , Uia)

∣∣∣∣∣∣ ≥ t

∣∣∣∣U1, · · · , Un

 ≤ 2 exp(−c′t2)

where c′ > 0 is an absolute constant. Then

1√
n− a+ 1

∣∣∣∣∣∣
∑

ia−1:ia−1 ̸=i,i1,··· ,ia−2

(Eia−2ia−1 − f(Uia−2 , Uia−1))
1

n− a

∑
ia:ia−1 ̸=i,i1,··· ,ia−1

f(Uia−1 , Uia)

∣∣∣∣∣∣
for any i, i1, · · · , ia−2, are sub-gaussian random variables, and

E max
i,i1,··· ,ia−2

1√
n− a+ 1

∣∣∣∣∣∣
∑

ia−1:ia−1 ̸=i,i1,··· ,ia−2

(Eia−2ia−1 − f(Uia−2 , Uia−1))×

1

n− a

∑
ia:ia−1 ̸=i,i1,··· ,ia−1

f(Uia−1 , Uia)

∣∣∣∣∣∣ = O(
√
log(n)).

By recalling (40) and the fact that Eij’s are binary,, a = O(1), we have

1∏a
j=1(n− j)

Emax
i
|Si,a−1 − Si,a−2| = O(

√
log(n)/n).

Similar arguments can be perfomed for Si,a−3, · · · , Si,1, Si,0 (we define i0 = i). Since a ≤ r
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is bounded, by combining all the results, we have

1∏a
j=1(n− j)

Emax
i
|L(a)

i − Si,0| = O(
√

log(n)/n) (41)

where

Si,0 =
∑

i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

f(Ui, Ui1)
a∏

j=2

f(Uij−1
, Uij).

Then

1∏a
j=1(n− j)

max
i
|L(a)

i − Si,0| = Op(
√

log(n)/n).

Step 2. Let

Ti,a−1 =
∑

i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

f(Ui, Ui1)
a−1∏
j=2

f(Uij−1
, Uij)E(f(Uia−1 , Uia)|Uia−1).

Then

max
i

1∏a
j=1(n− j)

|Si,0 − Ti,a−1|

= max
i

1∏a
j=1(n− j)

∣∣∣∣∣ ∑
i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

f(Ui, Ui1)
a−1∏
j=2

f(Uij−1
, Uij)(f(Uia−1 , Uia)− E(f(Uia−1 , Uia)|Uia−1))

∣∣∣∣∣
= max

i

1∏a−1
j=1(n− j)

∣∣∣∣∣∣
∑

i1,··· ,ia−1 distinct ,ik ̸=i,1≤k≤a−1

f(Ui, Ui1)
a−1∏
j=2

f(Uij−1
, Uij)

1

n− a

∑
ia

r∑
k=1

λkGk(Uia−1)[Gk(Uia)−
∫ 1

0

Gk(u)du]

∣∣∣∣∣
≤ 1

n− a

r∑
k=1

∣∣∣∣∣λkM
∑
ia

[Gk(Uia)−
∫ 1

0

Gk(u)du]

∣∣∣∣∣ = Op(n
−1/2),

where we use the fact that f(x, y) are bounded by 1, Gk are bounded by M , and that Ui

are i.i.d. random variables.

Similarly, let

Ti,a−2 =
∑

i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

f(Ui, Ui1)
a−2∏
j=2

f(Uij−1
, Uij)E(f(Uia−2 , Uia−1)f(Uia−1 , Uia)|Uia−2).
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Then

max
i

1∏a
j=1(n− j)

|Ti,a−1 − Ti,a−2|

= max
i

1∏a
j=1(n− j)

∣∣∣∣∣ ∑
i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

f(Ui, Ui1)
a−2∏
j=2

f(Uij−1
, Uij)

(f(Uia−2 , Uia−1)E(f(Uia−1 , Uia)|Uia−1)− E(f(Uia−2 , Uia−1)f(Uia−1 , Uia)|Uia−2))
∣∣

≲
1

n

∣∣∣∣∣∣
∑
ia−1

r∑
k1=1

r∑
k2=1

λk1λk2Gk1(Uia−1)Gk2(Uia−1)

∫ 1

0

Gk2(u)du−
∑
ia−1

r∑
k=1

λ2
k

∫ 1

0

Gk(u)du

∣∣∣∣∣∣
≲

1

n

r∑
k=1

∣∣∣∣∣∣
∑
ia−1

(G2
k(Uia−1)− 1)

∣∣∣∣∣∣+ 1

n

∑
k1 ̸=k2

∣∣∣∣∣∣
∑
ia−1

Gk1(Uia−1)Gk2(Uia−1)

∣∣∣∣∣∣+O

(
1

n

)
= Op(n

−1/2),

where we use the fact that f(x, y) are bounded by 1, Gk are bounded by M , r is bounded,∫ 1

0
G2

k(u)du = 1,
∫ 1

0
Gi(u)Gj(u)du = 0 for i ̸= j, and that Ui are i.i.d. random variables.

Similar arguments can be perfomed for Ti,a−3, · · · , Ti,1. Since a ≤ r is bounded, by

combining all the results, we have

1∏a
j=1(n− j)

max
i
|Si,0 − Ti,1| = Op(n

−1/2) (42)

where

Ti,1 = E

[ ∑
i1,··· ,ia distinct ,ik ̸=i,1≤k≤a

f(Ui, Ui1)
a∏

j=2

f(Uij−1
, Uij)

∣∣∣∣Ui

]
.

Then the proof is complete by combining the results from (41), (42), and noticing that

r is bounded.
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